

"Helping Industry and the Environment Prosper"

Certified Mail RRR 7005 1160 0002 0129 8093

April 18, 2006

Mr. George Papadopolous US Environmental Protection Agency RGP-NOC Processing Municipal Assistance Unit (CMU) 1 Congress Street, Suite 1100 Boston, Massachusetts 02114-2023

RE: EPA Remediation General Permit Notice of Intent

Tisbury Shell 86 Beach Road Tisbury, Massachusetts RTN 4-14290

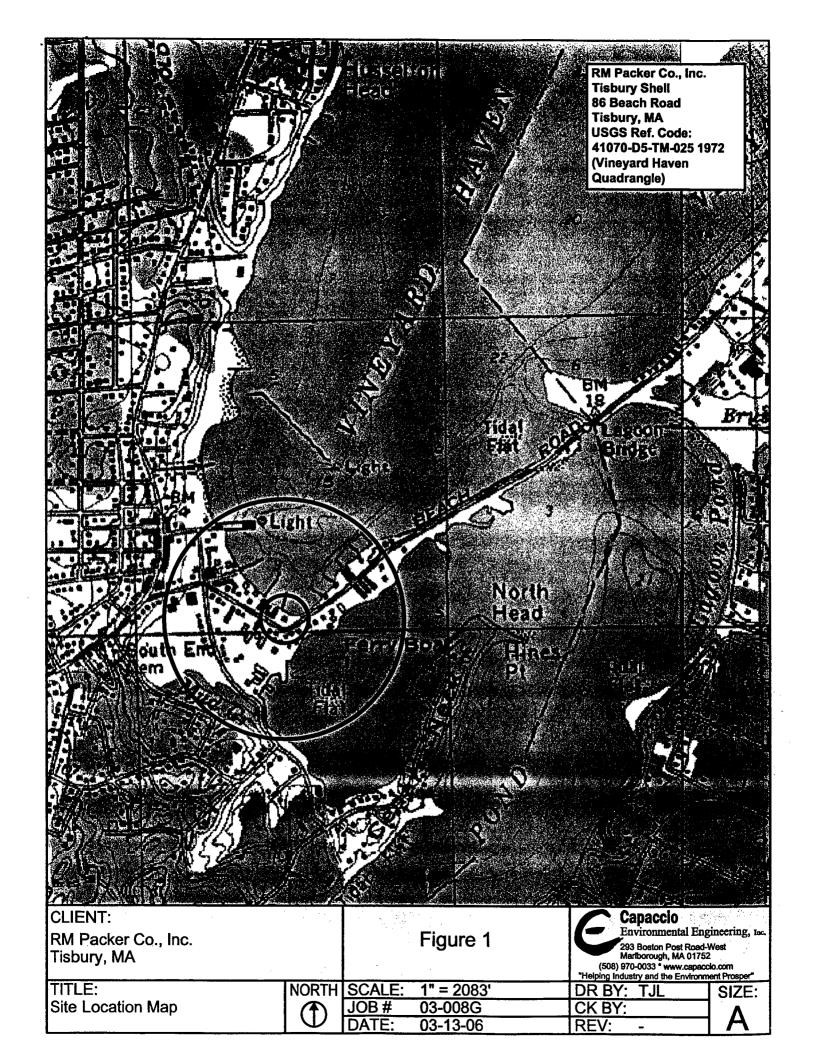
Dear Mr. Papadopolous,

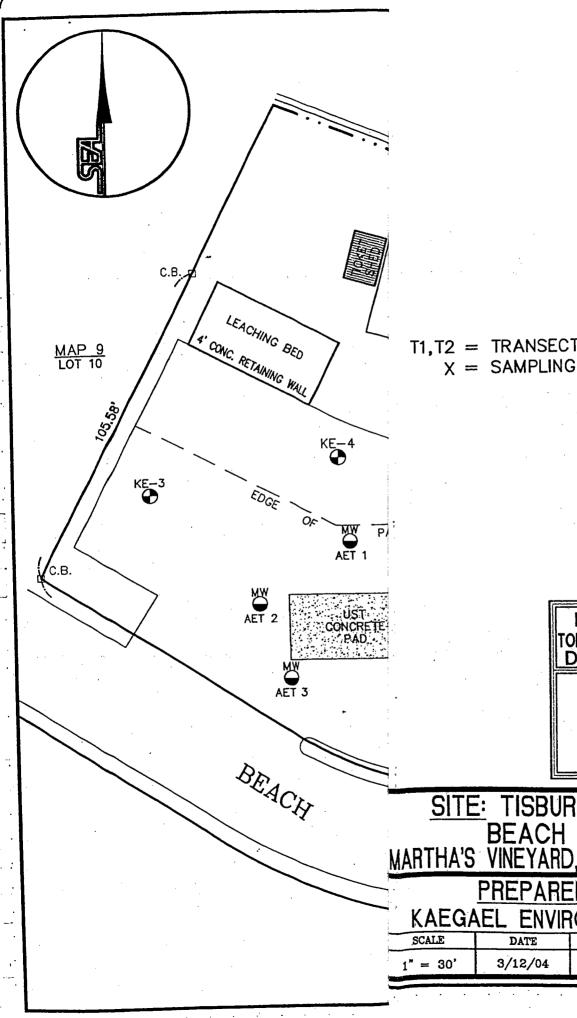
On behalf of R.M. Packer Co., Inc. (PACKER), Capaccio Environmental Engineering, Inc. (CAPACCIO) hereby submits the enclosed Notice of Intent with supporting documentation for an EPA Remediation General Permit (RGP) for the above-referenced location. The RGP is required to treat and discharge hydrocarbon-impacted from dewatering activities during installation of new gasoline underground storage tanks (USTs) at the facility. Figure 1 is a Site Location Map indicating the location of the property and Figure 2 is a Site Plan showing the layout of the property, location of the proposed tankfield and the location of the discharge point.

Groundwater will be encountered during installation of the new USTs. Groundwater will be evacuated to a frac tank for temporary storage prior to discharge. Discharge of the groundwater will be through a bag filter and a granular activated carbon unit. The groundwater treatment system will be designed to accommodate a maximum flow of 50 gallons per minute. A flow meter and flow totalizer will be placed immediately prior to discharge of the treated groundwater. Flow rates will be periodically monitored throughout discharging and the total amount of groundwater discharged will be recorded at the end of each day.

Treated groundwater will be discharged directly to the Vineyard Haven Harbor, located adjacent to the property. The discharge will be monitored in accordance with the RGP with in-line sample ports for the influent and effluent sample locations. Please note that the Vineyard Haven Harbor is listed as a Class SA waterway. However, per Mr. Mike Gildesgame of the Massachusetts Department of Conservation and Recreation, that area of the Vineyard Haven Harbor is not classified as an "Ocean Sanctuary". Therefore, discharge to the Vineyard Haven Harbor adjacent to the property is acceptable with his Department.

If you have any questions or require additional information, please do not hesitate to contact me at (508) 970-0033, ext. 18.


Sincerely,


Capaccio Environmental Engineering, Inc.

Dawn Horter, CPG, LSP Senior Hydrogeologist

pc:

Ralph Packer MF 03-008G

T1,T2 = TRANSECT 1 & TRANSECT 2 X = SAMPLING LOCATION

> MONITORING WELL TOP OF CASING ELEVATIONS DATUM: N.G.V.D. **1**929

> > AET 1 - 5.21 AET 2 - 5.13 AET 3 - 4.79 AET 4 - 4.55 AET 5 - 5.06

SITE: TISBURY TEXACO BEACH ROAD

MARTHA'S VINEYARD, MASSACHUSETTS

PREPARED FOR: KAEGAEL ENVIRONMENTAL INC.

SCALE	DATE	ACAD FILE	FIGURE
1" = 30'	3/12/04	01049M9-11	a

B. Suggested Form for Notice of Intent (NOI) for the Remediation General Permit

1. General site information. Please provide the following information about the site:

a) Name of facility/site : Tisbury Shell		Facility/site address: 86 Beach Road, Tisbury, Massachusetts 02568				
Location of facility/site: longitude: latitude: -70° 35′52″ 41° 27′ 10″	Facility SIC code(s): 5541	Street: 86 Beach Road				
b) Name of facility/site owner: R.M. Packer Co.,	inc.	Town: Tisbury				
Email address of owner:		State:	Zip: 02568	County: Dukes		
Telephone no.of facility/site owner: (508) 693-090	0					
Fax no. of facility/site owner: Address of owner (if different from site):		Owner is (check one): 1. Federal 2. State/Tribal 3. Private 4. other, if so, describe:				
Street: 188 Beach Road						
Town: Tisbury	State: MA	Zip: 02568	County: Dukes			
c) Legal name of operator : R.M. Packer Co., Inc.	Operator tele	lephone no: (508) 693-0900				
	Operator fax	Operator email:				
Operator contact name and title: Ralph M. Packer,	Jr., Treasurer					

Address of opera	ator (if different fr	om owner):	Street:								
Town:			State:	Zip:	County:						
1. Has a prior NI 2. Has a prior NI	PDES application (owing: sion been granted for the discharge Form 1 & 2C) ever been filed for the e"as defined by 40 CFR 122.2? discharge covered under the MA	the discharge? Yo	es No ✓, if "yes," date a	nd tracking #: e permitting? Yes_✓ No						
e) Is site/facility subject to any State permitting or other action which is causing the generation of discharge? Yes No ✓ If "yes," please list: 1. site identification # assigned by the state of NH or MA: 2. permit or license # assigned: 3. state agency contact information: name, location, and telephone number: f) Is the site/facility covered by any other EPA permit, including: 1. multi-sector storm water general permit? Y N, ✓, if Y, number: 2. phase I or II construction storm water general permit? Y N, ✓, if Y, number: 3. individual NPDES permit? Y N, ✓, if Y, number: 4. any other water quality related permit? Y N, ✓, if Y, number:											
2. Discharge in	nformation. Pleas	se provide information about the di	scharge, (attachi	ng additional sheets as needed)	including:						
•	_	for which the owner/applicant is s			_						
Exacation dev	vatering activities	for the purpose of installing underg	ground storage ta	inks at a gasoline service station	1.						
b) Provide the following information about each discharge:	Average flow 0.04 Is maximum flow a design value? Y N For average flow, include the units and appropriate notation if this value is a design value or estimate if not available. Average flow is in cubic feet per second and is estimated.										
3) Latitude and le pt.4:long.											

4) If hydrostatic testing, total volume of the discharge (gals):	5) Is the discharge intermittent \(\sqrt{\sqrt{o}} \) or seasonal \(\sqrt{?} \)? Is discharge ongoing \(\text{Yes} \) \(\sqrt{No} \sqrt{?} \)?
c) Expected dates of discharge (mm/dd/yy): start_06/01/06 e	end08/01/06
d) Please attach a line drawing or flow schematic showing water fl 1. sources of intake water, 2. contributing flow from the operation,	low through the facility including: , 3. treatment units, and 4. discharge points and receiving waters(s).

3. Contaminant information. In order to complete this section, the applicant will need to take a minimum of one sample of the untreated water and have it analyzed for all of the parameters listed in Appendix III. Historical data, (i.e., data taken no more than 2 years prior to the effective date of the permit) may be used if obtained pursuant to: i. Massachusetts' regulations 310 CMR 40.0000, the Massachusetts Contingency Plan ("Chapter 21E"); ii. New Hampshire's Title 50 RSA 485-A: Water Pollution and Waste Disposal or Title 50 RSA 485-C: Groundwater Protection Act; or iii. an EPA permit exclusion letter issued pursuant to 40 CFR 122.3, provided the data was analyzed with test methods that meet the requirements of this permit. Otherwise, a new sample shall be taken and analyzed.

a) Based on the analysis of the sample(s) of the untreated influent, the applicant must check the box of the sub-categories that the potential discharge falls within.

Gasoline Only	VOC Only	Primarily Metals	Urban Fill Sites	Contaminated Sumps	Mixed Contaminants	Aquifer Testing
Fuel Oils (and Other Oils) only	VOC with Other Contaminants	Petroleum with Other Contaminants	Listed Contaminated Sites	Contaminated Dredge Condensates	Hydrostatic Testing of Pipelines/Tanks	Well Development or Rehabilitation

b) Based on the analysis of the untreated influent, the applicant must indicate whether each listed chemical is believed present or believed absent in the potential discharge. Attach additional sheets as needed.

PARAMETER	Believe Absent	Believe Present	# of Samples	Type of Sample	Analytical Method	Minimum Level (ML) of	Maximum daily	value	Avg. daily value	
			(1 min- imum)	(e.g., grab)	Used (method #)	Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
1. Total Suspended Solids		✓	1	Grab (G)	160.2	2,000	2x106		2x106	
2. Total Residual Chlorine		✓	1	G	330.5	5,000	8,400		8,400	
3. Total Petroleum Hydrocarbons		✓	1	G	8100M	200	2,300		2,300	
4. Cyanide	✓		1	G	355.2	10	ND		ND	
5. Benzene		✓	1	G	8260B	1	860		860	
6. Toluene		✓	1	G	8260B	1	2,800		2,800	
7. Ethylbenzene		✓	1	G	8260B	1	490		490	
8. (m,p,o) Xylenes		✓	1	G	8260B	1	3,500		3,500	
9. Total BTEX⁴		✓	1	G	8260B	1	7,650		7,650	

⁴BTEX = Sum of Benzene, Toluene, Ethylbenzene, total Xylenes.

PARAMETER	Believe Absent	Believe Present	# of Samples	Type of Sample (e.g.,	Analytical Method	Minimum Level (ML) of	Maximum daily	value	Avg. daily value	;
			(1 min- imum)	grab)	Used (method #)	Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
10. Ethylene Dibromide (1,2- Dibromo-methane)	✓		1	G	8260B	1	ND		ND	
11. Methyl-tert-Butyl Ether (MtBE)		✓	1	G	8260B	2	7		7	
12. tert-Butyl Alcohol (TBA)	✓		1	G	8260B	50	ND		ND	
13. tert-Amyl Methyl Ether (TAME)	✓		1	G	8260B	2	NÐ		ND	
14. Naphthalene		✓	1	G	8260B	1	180		180	
15. Carbon Tetra- chloride	✓		1	G	8260B	1	ND		ND	
16. 1,4 Dichlorobenzene	1		1	G	8260B	1	ND		ND	
17. 1,2 Dichlorobenzene	1		1	G	8260B	1	ND		ND	
18. 1,3 Dichlorobenzene	✓		1	G	8260B	1	ND		ND	
19. 1,1 Dichloroethane	✓		1	G	8260B	1	ND		ND	
20. 1,2 Dichloroethane	✓		1	G	8260B	1	ND		ND	
21. 1,1 Dichloroethylene	✓		1	G	8260B	1	ND		ND	
22. cis-1,2 Dichloro- ethylene	1		1	G	8260B	. 1	ND		ND	
23. Dichloromethane (Methylene Chloride)	✓		1	G	8260B	5	ND		ND	
24. Tetrachloroethylene	1		1	G	8260B	1	ND		ND	

PARAMETER	Believe Absent	Believe Present	# of Samples	Type of Sample (e.g.,	Analytical Method Used	Minimum Level (ML) of Test	Maximum daily v	/alue	Avg. daily Value	e
	:	_	(1 min- imum)	grab)	(method #)	Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
25. 1,1,1 Trichloroethane	✓		1	G	8260B	1	ND		ND	
26. 1,1,2 Trichloroethane	✓		1	G	8260B	1	ND		ND	
27. Trichloroethylene	√		1	G	8260B	1	ND		ND	
28. Vinyl Chloride	✓		1	G	8260B	1	ND		ND	:
29. Acetone	✓		1	G	8260B	1	ND		ND	
30. 1,4 Dioxane	√		1	G	8260B	100	ND		ND	
31. Total Phenols		✓	1	G	8270C	10	48		48	
32. Pentachlorophenol	√		1	G	8270C	10	ND		ND	
33. Total Phthalates ⁵ (Phthalate esthers)	✓		1	G	8270C	10	ND		ND	
34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	✓		1	G	8270C	10	ND		ND	
35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)	✓		1	G	ЕРН	5	ND	i	ND	
a. Benzo(a) Anthracene	✓		1	G	ЕРН	5	ND		ND	
b. Benzo(a) Pyrene	✓		1	G	ЕРН	5	ND		ND	
c. Benzo(b)Fluoranthene	✓		1	G	ЕРН	5	ND		ND	
d. Benzo(k) Fluoranthene	✓		1	G	ЕРН	5	ND		ND	
e. Chrysene	✓		1	G	ÉРН	5	ND		ND	

⁵The sum of individual phthalate compounds.

PARAMETER	Believe Absent	Believe Present	# of Samples	Type of Sample (e.g.,	Analytical Method Used	Minimum Level (ML) of	Maximum daily v	alue /	Average daily v	alue
			(1 min- imum)	grab)	(method #)	Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
f. Dibenzo(a,h) anthracene	✓		1	G	ЕРН	5	ND		ND	
g. Indeno(1,2,3-cd) Pyrene	1		1	G	ЕРН	5	ND		ND	
36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)	✓		1	G	ЕРН	5	ND		ND	
h. Acenaphthene	✓		1	G	ЕРН	5	ND		ND	
i. Acenaphthylene	✓		1	G	ЕРН	5	ND		ND	
j. Anthracene	✓		1	G	ЕРН	5	ND		ND	
k. Benzo(ghi) Perylene	✓		1	G	ЕРН	5	ND		ND	
l. Fluoranthene	✓		1	G	ЕРН	5	ND		ND	
m. Fluorene	✓		1	G	ЕРН	5	ND		ND	
n. Naphthalene-		✓	1	G	ЕРН	5	70		70	
o. Phenanthrene	✓		1	G	ЕРН	5	ND		ND	
p. Pyrene	✓		1	G	ЕРН	5	ND		ND	
37. Total Polychlorinated Biphenyls (PCBs)	1		1	G	8082	1	ND		ND	
38. Antimony	✓		1	G	200.7	100	ND		ND	
39. Arsenic	✓		1	G	200.7	100	ND		ND	
40. Cadmium	✓		1	G	200.7	5	ND		ND	
41. Chromium III		✓	1	G	200.7	30	160		160	
42. Chromium VI	✓		1	G	3500	20	ND		ND	

PARAMETER	Believe Absent	Believe Present	# of Samples	Type of Sample (e.g.,	Analytical Method	Minimum Level (ML) of	Maximum daily	value	Avg. daily value	
		11050	(1 min- imum)	grab)	Used (method #)	Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
43. Copper		✓	1	G	200.7	50	390		390	
44. Lead		✓	1	G	200.7	40	510		510	
45. Mercury		✓	1	G	245.1	.5	.7		.7	
46. Nickel		✓	1	G	200.7	20	130		130	
47. Selenium	✓		1	G	200.7	200	ND		ND	
48. Silver	✓		1	G	200.7	1	ND		ND	
49. Zinc		✓	1	G	200.7	20	830		830	
50. Iron		✓	1	G	200.7	50	1X105		1X105	
Other (describe):										:

c) For discharges where **metals** are believed present, please fill out the following:

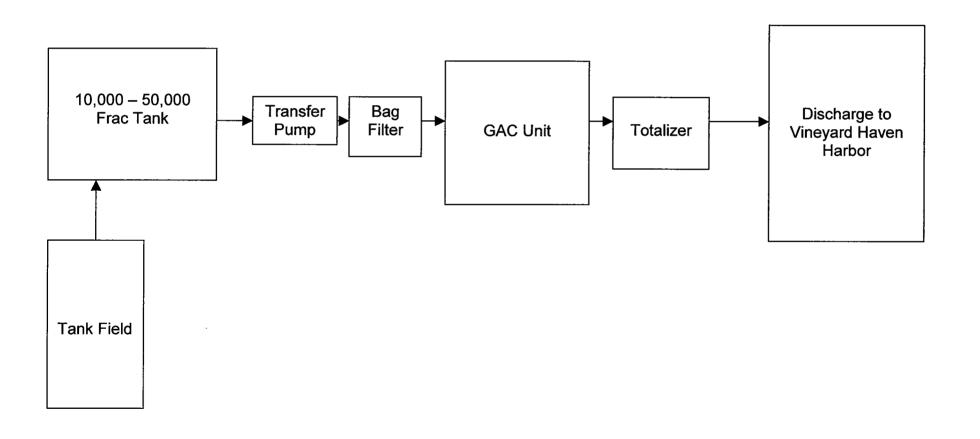
Step 1: Do any of the metals in the influent have a reasonable potential to exceed the effluent limits in Appendix III (i.e., the limits set at zero to five dilutions)? Y / N	If yes, which metals? Cr III, Cu, Pb, Ni, Zn, Fe
Step 2: For any metals which have reasonable potential to exceed the Appendix III limits, calculate the dilution factor (DF) using the formula in Part I.A.3.c) (step 2) of the NOI instructions or as determined by the State prior to the submission of this NOI. What is the dilution factor for applicable metals? Metals: Discharge is to the Vineyard Haven Harbor, not a stream. Assume >100 DF DF: >100	Look up the limit calculated at the corresponding dilution factor in Appendix IV. Do any of the metals in the influent have the potential to exceed the corresponding effluent limits in Appendix IV (i.e., is the influent concentration above the limit set at the calculated dilution factor)? Y _ N If "Yes," list which metals: Pb, Fe

4. Treatment system informa	ition. Please des	cribe the treatmen	nt system using separ	ate sneets as nece	ssary, including:		
a) A description of the treatn	nent system, inclu	ding a schematic	of the proposed or e	xisting treatment s	system:		
Groundwater will be pumped	•	•	• •	-	-	oroundwater from the	e frac tank mass it
through a bag filter and a gra	nular activated ca	irhon unit The s	vstem will onerate a	maximum of 50 g	nm intermittently when t	he tank is full. The a	verage discharge is
estimated at 20 gpm.	maiar activated ce	iroon amt. The s	ystem win operate a	maximum of 50 g	pin miorimicomity whom a	no tame to rane. The a	vorage albertarge is
organism as 20 Brass							
b) Identify each applicable	Frac. tank	Air stripper	Oil/water sep	parator	Equalization tanks	Bag filter	GAC filter
treatment unit (check all		Tan Sunppor					,
that apply):	✓					✓	✓
11 07							
	Chlorination	Dechlorinatio	n Other (please	e describe):			
c) Proposed average and ma	vimum flow rote	o (callons nor mi	inuta) for the dischar	ro and the design	flow rate(s) (gallons per	minuta) of the treatm	ant cyctam:
Average flow rate of dischar			ate of treatment syste		Design flow rate of treat		ent system.
Average now rate of dischar	<u> </u>		are of treatment syste	<u> </u>		inent system <u>so</u>	
d) A description of chemical	additives being u	sed or planned to	be used (attach MSI	OS sheets):			
NA	-	-					
1121							
S. Receiving surface water(s)	. Please provide	information abou	it the receiving water	(s), using separate	sheets as necessary:	- 	1
a) Identify the discharge path	nway: I	Direct ✓	Within facility	Storm drain	River/brook	Wetlands	Other (describe):
, , ,	1		<i>-</i>		_		, ,
155 11	0.1 11 1	.1 .	1 1' (1 ()	C.I	,	1	1
b) Provide a narrative descrip	otion of the discha	irge pathway, inc	cluding the name(s) o	t the receiving wa	iters:		
Discharge will be directed directed directed	rectly to the Vine	yard Haven Harb	or, located adjacent t	o the property.			

 c) Attach a detailed map(s) indicating the site location and location of the outfall to the receiving water: 1. For multiple discharges, number the discharges sequentially. 2. For indirect dischargers, indicate the location of the discharge to the indirect conveyance and the discharge to surface water The map should also include the location and distance to the nearest sanitary sewer as well as the locus of nearby sensitive receptors (based on USGS topographical mapping), such as surface waters, drinking water supplies, and wetland areas.
d) Provide the state water quality classification of the receiving water SA
e) Provide the reported or calculated seven day-ten year low flow (7Q10) of the receiving water NA cfs Please attach any calculation sheets used to support stream flow and dilution calculations.
f) Is the receiving water a listed 303(d) water quality impaired or limited water? Yes No_✓ If yes, for which pollutant(s)? Is there a TMDL? Yes No_✓ If yes, for which pollutant(s)?
6. Results of Consultation with Federal Services: Please provide the following information according to requirements of Part I.B.4 and Appendices II and VII.
a) Are any listed threatened or endangered species, or designated critical habitat, in proximity to the discharge? YesNo Has any consultation with the federal services been completed?
b) Are any historic properties listed or eligible for listing on the National Register of Historic Places located on the facility or site or in proximity to the discharge? Yes No ✓ Have any state or tribal historic preservation officer been consulted in this determination (Massachusetts only)? Yes No ✓

ermit. g Beach
way to a tment of Haven
gasoline
ence from ate that no are known
Have gasol ence ate t

8. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification:


I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Facility/Site Name: Tisbury Shell

Operator signature: Rull Red Lea.

Title: 73 e c s = 123/66

PROCESS FLOW DIAGRAM - DEWATERING TREATMENT SYSTEM (TYPICAL)

CERTIFICATE OF ANALYSIS

Capaccio Environmental Eng. Attn: Ms. Dawn Horter 293 Boston Post Road - West Marlborough, MA 01752 Date Received: Date Reported:

3/28/06 4/5/06

P.O. #:

Work Order #:

0603-05307

DESCRIPTION: RM PACKER - TISBURY SHELL - 86 BEACH ROAD VINEYARD HAVEN, MA

Subject sample(s) has/have been analyzed by our Warwick, R.I. laboratory with the attached results.

Reference: All parameters were analyzed by U.S. EPA approved methodologies and all NELAC requirements were met. The specific methodologies are listed in the methods column of the Certificate Of Analysis.

Data qualifiers (if present) are explained in full at the end of a given sample's analytical results.

Certification #: RI-033, MA-RI015, CT-PH-0508, ME-RI015 NH-253700 A & B, USDA S-41844, NY-11726

If you have any questions regarding this work, or if we may be of further assistance, please contact us.

Approved by:

Mike Hobin Data Reporting

enc: Chain of Custody

R.I. Analytical Laboratories, Inc. **CERTIFICATE OF ANALYSIS**

Capaccio Environmental Eng. Date Received: 3/28/06

Work Order #:

0603-05307

Approved by:

Data Reporting

Sample #: 001

SAMPLE DESCRIPTION: AET 4

SAMPLE TYPE:

GRAB

SAMPLE DATE/TIME: 3/27/2006 @ 14:00

	SAMPLE	DET.			DATE	
PARAMETER	RESULTS	LIMIT	UNITS	METHOD	ANALYZED	ANALYST
T. SUSPENDED SOLIDS	2200	2.0	mg/l	EPA 160.2	3/30/06	LGB
T. RESIDUAL CHLORINE	8.4	5.0	mg/l	EPA 330.5	3/28/06	ML
HEXAVALENT CHROMIUM	<0.02	0.02	mg/l	SM3500-CR D	3/28/06	EC
TOTAL CYANIDE	<0.01	0.01	mg/l	EPA 335.2	3/31/06	EC
		****			0.01.00	50
ТРН						
TPH GC/FID	2300	200	ug/l	SW846 8100M	3/31/06	CY
Extraction date	Extracted	,-	-, ⊕ -	SW846 3510	3/29/06	KR
					•,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
РСВ						
Aroclor-1016	<1	ī	ug/l	SW-846 8082	3/30/06	MFT
Aroclor-1221	<1	1	ug/l	SW-846 8082	3/30/06	MFT
Aroclor-1232	<1	1	ug/l	SW-846 8082	3/30/06	MFT
Aroclor-1242	<1	1	ug/l	SW-846 8082	3/30/06	MFT
Aroclor-1248	<1	1	ug/l	SW-846 8082	3/30/06	MFT
Aroclor-1254	<1	1	ug/l	SW-846 8082	3/30/06	MFT
Aroclor-1260	<1	1	ug/l	SW-846 8082	3/30/06	MFT
SURROGATE		·	RANGE	SW-846 8082	3/30/06	MFT
Tetrachloro-m-xylene (TCMX)	44		30-150%	SW-846 8082	3/30/06	MFT
Decachlorobiphenyl	26*		30-150%	SW-846 8082	3/30/06	MFT
Extraction date	Extracted			SW846 3510	3/28/06	MC
						•
EPH/PAH						
C9-C18 Aliphatics	85	20	ug/l	MADEP	4/3/06	NR
C19-C36 Aliphatics	<20	20	ug/l	MADEP	4/3/06	NR
C11-C22 Aromatics	110	20	ug/l	MADEP	4/3/06	NR
Total EPH	200		ug/l	MADEP	4/3/06	NR
TARGET PAH ANALYTES			G		4/3/06	NR
Naphthalene	70	5	ug/l	MADEP	4/3/06	NR
2-Methylnaphthalene	9,4	5	ug/l	MADEP	4/3/06	NR
Acenaphthylene	<5	5	ug/l	MADEP	4/3/06	NR
Acenaphthene	<5	5	ug/l	MADEP	4/3/06	NR
Fluorene	<5	5	ug/l	MADEP	4/3/06	NR
Phenanthrene	<5	5	ug/l	MADEP	4/3/06	NR
Anthracene	<5	5	ug/i	MADEP	4/3/06	NR
Fluoranthene	<5	5	ug/l	MADEP	4/3/06	NR
Pyrene	<5	5	ug/l	MADEP	4/3/06	NR
Benzo(a)anthracene	<\$	5	ug/l	MADEP	4/3/06	NR
Chrysene	<5	5	ug/l	MADEP	4/3/06	NR
Benzo(b)fluoranthene	<5	5	ug/i ug/i	MADEP	4/3/06	NR
Benzo(k)fluoranthene	<5	5	ug/l	MADEP	4/3/06	NR
Benzo(a)pyrene	<5	5 .	ug/l	MADEP	4/3/06	NR NR
indeno(1,2,3-ed)pyrene	<5	5	ug/l	MADEP	4/3/06	NR
Dibenzo(a,h)anthracene	<5	5	ug/l ug/l	MADEP	4/3/06	NR NR
2.02	→ J	,	ag, i	MADU	טטובוד	1417

R.I. Analytical Laboratories, Inc.

CERTIFICATE OF ANALYSIS

Capaccio Environmental Eng. Date Received: 3/28/06

Work Order #:

0603-05307

Approved by:

Data Reporting

Sample #: 001

SAMPLE DESCRIPTION: AET 4

SAMPLE TYPE:

GRAB

SAMPLE DATE/TIME: 3/27/2006 @ 14:00

SAMPLE TYPE: GRAB		SAMPL	E DATE/TI	ME: 3/27/2006 (@ 14:00	
PARAMETER	SAMPLE	DET.	LINITE	MOMILOS	DATE	
	RESULTS	LIMIT	UNITS	METHOD	ANALYZED	ANALYST
Benzo(g,h,i)perylene SURROGATES	<5	5	ug/l	MADEP	4/3/06	NR
			RANGE		4/3/06	NR
Chloro-octadecane	47		40-140%	MADEP	4/3/06	NR
Ortho-terphenyl	72		40-140%	MADEP	4/3/06	NR
FRACTIONATION SURROGATES	00		RANGE		4/3/06	NR
2-Fluorobiphenyl	80		40-140%	MADEP	4/3/06	NR
2-Bromonaphthalene Extraction date	72		40-140%	MADEP	4/3/06	NR
Extraction date	Extracted			MADEP	3/29/06	OA
Volatile Organic Compounds						
Benzene	860	1	ug/l	SW-846 8260B	3/30/06	BAS
Broinobenzene	<i< td=""><td>1</td><td>ug/l</td><td>SW-846 8260B</td><td>3/30/06</td><td>BAS</td></i<>	1	ug/l	SW-846 8260B	3/30/06	BAS
Bromochloromethane	<1	i	ug/l	SW-846 8260B	3/30/06	BAS
Bromodichloromethane	<1	1	ug/l	SW-846 8260B	3/30/06	BAS
Bromolorin	<1	i	ug/l	SW-846 8260B	3/30/06	BAS
Bromomethane	<10	10	ug/l	SW-846 8260B	3/30/06	BAS
n-Butylbenzene	54	l	ug/l	SW-846 8260B	3/30/06	BAS
sec-Butylbenzene	<1	1	ug/l	SW-846 8260B	3/30/06	BAS
tert-Butylbenzene	<1	I	ug/l	SW-846 8260B	3/30/06	BAS
Carbon Tetrachloride	<1	I	ug/l	SW-846 8260B	3/30/06	BAS
Chlorobenzene	<1	1	ug/i	SW-846 8260B	3/30/06	BAS
Chloroethane	<5	5	ug/t	SW-846 8260B	3/30/06	BAS
Chloroform	<1	1	ug/l	SW-846 8260B	3/30/06	BAS
Chloromethane	<5	5	ug/l	SW-846 8260B	3/30/06	BAS
2-Chlorotoluene	<1	1	ug/l	SW-846 8260B	3/30/06	BAS
4-Chlorotoluene	<1	1	ug/l	SW-846 8260B	3/30/06	BAS
Dibromochloromethane	<1	F	ug/l	SW-846 8260B	3/30/06	BAS
1,2-Dibromo-3-Chloropropane	<2	2	ug/l	SW-846 8260B	3/30/06	BAS
1,2-Dibromoethane(EDB)	<1	[ug/l	SW-846 8260B	3/30/06	BAS
Dibromomethane	<2	2	ug/l	SW-846 8260B	3/30/06	BAŞ
1,2-Dichlorobenzene	<1	1	ug/l	SW-846 8260B	3/30/06	BAS
1,3-Dichlorobenzene	<1	l	ug/l	SW-846 8260B	3/30/06	BAS
1,4-Dichlorobenzene	<1	1	ug/l	SW-846 8260B	3/30/06	BAS
Dichlorodifluoromethane	<5 .	5	ug/l	SW-846 8260B	3/30/06	BAS
1,1-Dichloroethane	</td <td>1</td> <td>ug/l</td> <td>SW-846 8260B</td> <td>3/30/06</td> <td>BAS</td>	1	ug/l	SW-846 8260B	3/30/06	BAS
1,2-Dichloroethane	<1	1	ug/l	SW-846 8260B	3/30/06	BAS
1,1-Dichloroethene	<1	1	ug/i	SW-846 8260B	3/30/06	BAS
cis-1,2-Dichloroethene	<1	1	ug/l	SW-846 8260B	3/30/06	BAS
trans-1,2-Dichloroethene	<1	1	ug/l	SW-846 8260B	3/30/06	BAS
1,2-Dichloropropane	<1	1	ug/l	SW-846 8260B	3/30/06	BAS
1,3-Dichloropropane	<1	1	ug/l	SW-846 8260B	3/30/06	BAS
2,2-Dichloropropane	<1	l	ug/l	SW-846 8260B	3/30/06	BAŞ
1,1-Dichloropropene	<1	1	ug/l	SW-846 8260B	3/30/06	BAS
Ethylbenzene	490	i	ug/l	SW-846 8260B	3/30/06	BAS
					2.00.00	

R.I. Analytical Laboratories, Inc.

CERTIFICATE OF ANALYSIS

Capaccio Environmental Eng. Date Received: 3/28/06

3/28/06

Work Order #:

0603-05307

Approved by:

Sample #: 001

SAMPLE DESCRIPTION: AET 4

SAMPLE TYPE:

GRAB

SAMPLE DATE/TIME: 3/27/2006 @ 14:00

SAMPLE TYPE: GRAB		SAMPL	E DATE/TI	MIE: 3/27/2006 (y 14:00	
DAD AMETER	SAMPLE	DET.	. In view o		DATE	
PARAMETER	RESULTS	LIMIT	UNITS	METHOD	ANALYZED	ANALYST
Hexachlorobutadiene	<1	i .	ug/l	SW-846 8260B	3/30/06	BAS
Isopropylbenzene	35	1	ug/l	SW-846 8260B	3/30/06	BAS
p-Isopropyltoluene	4	i	ug/l	SW-846 8260B	3/30/06	BAS
Methylene Chloride	<5	5	ug/l	SW-846 8260B	3/30/06	BAS
Naphthalene	180	Į.	ug/l	SW-846 8260B	3/30/06	BAS
n-Propylbenzene	56	ŗ	ug/l	SW-846 8260B	3/30/06	BAS
Styrene	<1	i	ug/l	SW-846 8260B	3/30/06	BA\$
1,1,1,2-Tetrachloroethane	<1	1	ug/l	SW-846 8260B	3/30/06	BAS
1,1,2,2-Tetrachloroethane	<1	1	ug/l	SW-846 8260B	3/30/06	BAS
Tetrachloroethene	<1	ı	ug/l	SW-846 8260B	3/30/06	BAS
Toluene	2800	1	ug/l	SW-846 8260B	3/30/06	BAS
1,2,3-Trichlorobenzene	<1	l	ug/l	SW-846 8260B	3/30/06	BAS
1,2,4-Trichlorobenzene	<1	1	ug/i	SW-846 8260B	3/30/06	BAS
1,1,1-Trichloroethane	<i< td=""><td>1</td><td>ug/l</td><td>SW-846 8260B</td><td>3/30/06</td><td>BAS</td></i<>	1	ug/l	SW-846 8260B	3/30/06	BAS
1,1,2-Trichloroethane	<1	i	ug/l	SW-846 8260B	3/30/06	BAS
Trichloroethene	<1	1	ug/l	SW-846 8260B	3/30/06	BAS
Trichlorofluoromethane	<1	1	ug/l	SW-846 8260B	3/30/06	BAS
1,2,3-Trichloropropane	<1	i	ug/l	SW-846 8260B	3/30/06	BAŞ
1,2,4-Trimethylbenzene	730	1	ug/I	SW-846 8260B	3/30/06	BAS
1,3,5-Trimethylbenzene	180	i	ug/l	SW-846 8260B	3/30/06	BAS
Vinyl Chloride	<1	1	ug/l	SW-846 8260B	3/30/06	BAS
o-Xylene	1000	1	ug/l	SW-846 8260B	3/30/06	BAS
m&p-Xylene	2500	1	ug/l	SW-846 8260B	3/30/06	BAS
MTBE	7	2	ug/l	SW-846 8260B	3/30/06	BAS
Tertiary Amyl Methyl Ether	<2	2	ug/l	SW-846 8260B	3/30/06	BAS
Tertiary Butanol (TBA)	<50	50	ug/l	SW-846 8260B	3/30/06	BAS
I,4-Dioxane	<100	100	ug/l	SW-846 8260B	3/30/06	BA\$
SURROGATES			RANGE	SW-846 8260B	3/30/06	BAS
Dibromofluoromethane	101		86-118%	SW-846 8260B	3/30/06	BAS
Toluene-d8	100		88-110%	SW-846 8260B	3/30/06	BAS
4-Bromofluorobenzene	100		86-115%	SW-846 8260B	3/30/06	BAS
1,2 Dichloroethane-d4	93		80-120%	SW-846 8260B	3/30/06	BAS
SEMI-VOLATILE ORGANIC COMPOUNDS						
Bis(2-ethylhexyl)phthalate	-10	10	41	G112 044 00000	2 (2 0 10 4	
	<10	10	ug/l	SW-846 8270C	3/30/06	RGM
Butylbenzyl phthalate	<10	10	ug/l	SW-846 8270C	3/30/06	RGM
Di-n-butyl phthalate	<10	10	ug/l	SW-846 8270C	3/30/06	RGM
Diethyl phthalate	<10	10	ug/l	SW-846 8270C	3/30/06	RGM
Dimethyl phthalate	<10	10	ug/l	SW-846 8270C	3/30/06	RGM
Di-n-octyl phthalate	<10	10	ug/l	SW-846 8270C	3/30/06	RGM
4-Chloro-3-methylphenol	<10	10	ug/l	SW-846 8270C	3/30/06	RGM
2-Chlorophenol	<10	10	ug/l	SW-846 8270C	3/30/06	RGM
2,4-Dichlorophenol	<10	10	ug/l	SW-846 8270C	3/30/06	RGM
2,4-Dimethylphonol	48	10	ug/l	SW-846 8270C	3/30/06	RGM

R.I. Analytical Laboratories, Inc.

CERTIFICATE OF ANALYSIS

Capaccio Environmental Eng. Date Received:

3/28/06

Work Order #:

0603-05307

Approved by:

Data Reporting

Sample #: 001

cartridges.

SAMPLE DESCRIPTION: AET 4

SAMPLE TYPE:

GRAB

SAMPLE DATE/TIME: 3/27/2006 @ 14:00

	SAMPLE	DET.			DATE	
PARAMETER	RESULTS	LIMIT	UNITS	METHOD	ANALYZED	ANALYST
2-Methyl-4,6-dinitrophenol	<10	10	ug/l	SW-846 8270C	3/30/06	RGM
2,4-Dinitrophenol	<10	10	ug/l	SW-846 8270C	3/30/06	RGM
2-Nitrophenol	<10	10	ug/l	SW-846 8270C	3/30/06	RGM
4-Nitrophenol	<10	10	ug/l	SW-846 8270C	3/30/06	RGM
Pentachlorophenol	<10	10	ug/l	SW-846 8270C	3/30/06	RGM
Phenol	<10	10	ug/l	SW-846 8270C	3/30/06	RGM
2,4,5-Trichlorophenol	. <10	10	ug/l	SW-846 8270C	3/30/06	RGM
2,4,6-Trichlorophenol	<10	10	ug/i	SW-846 8270C	3/30/06	RGM
3,4-Methylphenol	<10	10	ug/i	SW-846 8270C	3/30/06	RGM
2-Methylphenol	<10	10	ug/l	SW-846 8270C	3/30/06	RGM
SURROGATES			RANGE	SW-846 8270C	3/30/06	RGM
Phenol-d5	30		10-94%	SW-846 8270C	3/30/06	RGM
2-Fluorophenol	34		21-100%	SW-846 8270C	3/30/06	RGM
2,4,6-Tribromophenol	78		10-123%	SW-846 8270C	3/30/06	RGM
Nitrobenzene-d5	52		35-114%	SW-846 8270C	3/30/06	RGM
2-Fluorobiphenyl	71		43-116%	SW-846 8270C	3/30/06	RGM
P-Terphenyl-d14	70		33-141%	SW-846 8270C	3/30/06	RGM
DISSOLVED METALS	r					
ANTIMONY	<0.1	0.1	mg/l	EPA 200.7	4/4/06	LD
ARSENIC	<0.1	0.1	ıng/l	EPA 200.7	4/4/06	LD
CADMIUM	< 0.005	0.005	mg/l	EPA 200.7	4/4/06	LD
CHROMIUM	0.16	0.03	mg/l	EPA 200.7	4/4/06	LD
COPPER	0.39	0.05	mg/l	EPA 200.7	4/4/06	LD
IRON	100	0.05	mg/l	EPA 200.7	4/5/06	LD
LEAD	0.51	0.04	mg/l	EPA 200.7	4/4/06	LD
MERCURY	0.0007	0.0005	ıng/l	EPA 245.1	4/3/06	REA
NICKEL	80.0	0.02	mg/i	EPA 200.7	4/4/06	LD
SELENIUM	<0.2	0.2	mg/l	EPA 200.7	4/4/06	LD
SILVER	<0.0010	0.0010	ıng/l	EPA 200.9	4/4/06	REA
ZINC	0.83	0.02	mg/l	EPA 200.7	4/4/06	LD

Total Residual Chlorine - Increased detection limit due to sample matrix.

All QA/QC procedures required by the EPH Method were followed. All Performance/Acceptance Standards for the required QA/QC procedures were achieved or otherwise stated. No significant modifications were made to the EPH Method with the following exception: C-range values may have been blank subtracted to minimize the effect of leachable plasticizers from the SPE

Method 8082:* Surrogate outside QA/QC criteria. Additional sample is unavailable for re-extraction.

51 Fremont Street Needham, MA 02494 Tel: 781-455-0003, Fax: 781-455-8336

ı	· · _ · ·
ı	
ı	
ı	
1	
ı	environmental
ı	CHALCHE
Į	
5	استناه من السياسة الساساسة السياسة السياسة السياسة السياسة السياسة السياسة السياسة الس

CHAIN OF CUSTODY RECORD

environ & inc	mental Justrial	C	ПАП	ı Oı			ΟL	<i>)</i>	Γ,	· L (JΛ	J		Lai	borato	ry:						RIA	<u> </u>
Client	Capaccio I	Environme	ntal Engin	eering											An	alytical	Informa	ıtion]
Address	293 Boston	Post Road	Road Mariborough, MA										ф			3,0								EST to Invoice:
Contact		Dawn Ho	rter								. 1		xau	₩¥		1 Ph								Capaccio
Phone # 978-270-	0193	Fax:		508-	970-0028		_	M	ATI	₹IX			dio	ate		במי		%¥						Lab to Invoice:
							\dashv	Was	itewat	er			4,	를		2,2		Je J						Capaccio Lab Report to:
Duele et Marie	DM C	lastes Tis	hChal			•					TBA, EDB, 1,4 dioxane	2 ethylhexyl Phthalate)		<i>\$</i>		pentachlorophenol)						·		
	RM Packer - Tisbury Shell 86 Beach Road Vineyard Haven, MA			_	. Groundwater				Ą,	E A		1/4		웆					Capaccio					
Address			ara navei					7		. Drinking Water			Ħ.	Į.		,56, 74,	ာပ္က	ntac		!				Billing Reference:
Contact Raiph Pa	icker	tei:		508-	889-4949		 ⁴.	Soil			- 1		E E	2.6			, TR	3 pe			1			BR
Location ID #		Fax:					5.	Surf	urface Water		_	VOC 8260, plus TAME,	Phthalate (plus bis		Metals (field filtered)	+6, TSS,	gi i							
Description Groundwater	Sampling	PO#					6.	Othe	er			Targets	blu	ä		d fil	+e,	η						
	С	ollection	7		of bottle	s		Pre	serva	ion	=	Tai	260,	ate ((fiel	Chromium	Phenols (including		o o				
			Matrix		Type	Π	. [품	8	हा	1 1	-	/ *	C 8.	that I	PCBs	tals	E O	oua	I	Cyanide				
Field ID / Point of Collection		_		Glass	Plastic	VOA's	로볼	HNO3	H2So4	Office 1	None	ЕРН	2	Æ	ည	₹	<u>ဂ</u>	P.	ТРН	<u> 3</u>				Comments:
AET 4	3/27/0	1400 H	2	Se	c Bel	w	Se	¢ 1	Bel	طم	4	_x_	×	x	х	x	x	х	x	х				
																					. :			
										Ħ														
		<u> </u>					\Box			Ħ	П													
· · · · · · · · · · · · · · · · · · ·		_	-		-		\vdash			\Box	H													
	-			 			\vdash	\vdash	\vdash	+1	H													
			+	 		-	┝╌┼╌	1	-	+	\vdash													
							+	Н	\vdash	+	H													
			-	 			\vdash	\vdash		+	H	-												
Turnaround Informa	tion			<u> </u>	<u> </u>	ļi	QA/			╄	Ш	J		igsqcut		ļ				Additio	onal Inf	omatio	n	L
Std. 10 Day Tumaround	Approve	d By:		S	PECIAL	QA/QC	or DAT	AR	equire	ments	s:			VL 10	11.0-	#ach	ud	I M	ril	Qυ.	3/25	dala		N FONU 3/28/06 M
7 Day RUSH 4 Day RUSH			4		MCP	Data En	hance	men	it GW	-3				"				~ / / ·	スハ- マカ	@ V /	100	1016	4077	1 8 FORCE 3/28/06 M
			Bottle s	et: 3 VC	AS W/F	ICL; 3 1	L Amb	ers	no pre	s; 1 :	500F	2 w/ H	NO3;	火火	Nill	n ya	ME	.001	70,	Q V U	C U	LV '	75.0	, , ,
					1L Ambe																			
1-3 Day RUSH																								(0603-05387)
Rollondished by Sample (custody must be	documented b	Date Yi	o samplos			cluding o	ourier	Receive	0	_	\mathcal{A}	1					Data	1./			0~	^	
Rollinguiphed by Sampler:			د ا	140(V)	ه ده	700			1 Receive	By:	77	<u> </u>	P/7					Date Tim	1.00	(4)	<u>(/)</u>	900	<u>v</u>	
2 Relinquished by Sampler:	Date Time:	;	Recolve	120 C	PO	14.7			2 Date Tin	10;		- 1	Seal #				Prosorve	where as	plicable			Onko		Temp.
3			3					Ì	<u> </u>									where ap				Onko		

Commonwealth of Massachusetts

Division of Fisheries & Wildlife

Wayne F. MacCallum, Director

February 10, 2006

Capaccio Environmental Engineering, Inc. Attn: Dawn Horter 293 Boston Post Road West Marlborough, MA 01752

Re:

Tisbury Shell Beach Road Tisbury, MA

NHESP Tracking Number: 06-19144

Dear Ms. Horter,

Thank you for contacting the Natural Heritage and Endangered Species Program ("NHESP") of the MA Division of Fisheries & Wildlife for information regarding state-protected rare species in the vicinity of the site identified above.

At this time we are not aware of any state-listed rare plants or animals or exemplary natural communities in the immediate vicinity of this site.

This evaluation is based on the most recent information available in the NHESP database, which is constantly being expanded and updated through ongoing research and inventory. Should your site plans change, or new rare species information become available, this evaluation may be reconsidered. Please note that this determination addresses only the matter of **rare** wildlife habitat and does not pertain to other wildlife habitat issues that may be pertinent to the proposed project.

If you have any questions regarding this review please call Jenna Garvey, Environmental Review Assistant, at ext. 303.

Sincerely,

Thomas W. French, Ph.D.

Assistant Director

United States Department of the Interior

FISH AND WILDLIFE SERVICE New England Field Office 70 Commercial Street. Suite 300 Concord, New Hampshire 03301-5087

February 13, 2006

Reference:

Project

Location

NPDES Remediation Permit, storage tanks Vineyard Haven, MA

Dawn Horter Capaccio Environmental Engineering, Inc. 293 Boston Post Road Marlborough, MA 01752

Dear Ms. Horter:

This responds to your recent correspondence requesting information on the presence of federallylisted and/or proposed endangered or threatened species in relation to the proposed activity(ies) referenced above.

Based on information currently available to us, no federally-listed or proposed, threatened or endangered species or critical habitat under the jurisdiction of the U.S. Fish and Wildlife Service are known to occur in the project area(s). Preparation of a Biological Assessment or further consultation with us under Section 7 of the Endangered Species Act is not required.

This concludes our review of listed species and critical habitat in the project location(s) and environs referenced above. No further Endangered Species Act coordination of this type is necessary for a period of one year from the date of this letter, unless additional information on listed or proposed species becomes available.

Thank you for your coordination. Please contact us at 603-223-2541 if we can be of further assistance.

Sincerely yours,

Michael J. Amaral

Endangered Species Specialist

New England Field Office

mishael g. amaral